Spark Day at the Nashua Academy for Science and Design – Spring 2017


Explaining Amateur Radio to ASD Students

Explaining Amateur Radio to ASD Students

John Keslo, W1MBG, Jamey Finchum, KC1ENX, and I (all members of the Nashua Area Radio Club) recently had the chance to again visit the Academy for Science and Design (ASD) in Nashua, New Hampshire to provide an Introduction to Amateur Radio for the students there. ASD’s goal is to be a world-class school that specializes in science, engineering, mathematics and design for students in grades 6-12.

ASD periodically holds SPARK (Symposium Promoting Advancement of Real-world Knowledge) conferences, which enable ASD students to learn about areas which might help them to develop careers in Science, Technology, Engineering and/or Math (STEM).

The students at ASD are extremely bright and are highly motivated to develop STEM careers. We had about 65 students elect to attend the two sessions that we presented and the kids showed a lot of interested in our presentations.

Explaining Our High-Altitude Ballon Project

Explaining Our High-Altitude Ballon Project

We began each session with some classroom time where we explained what Amateur Radio is about and some of our club’s Amateur Radio  projects. We talked about and showed components of our High Altitude Balloon Project, our Satellite Ground Station and our Field Day activities. The interest level among the kids was high and lots of questions were asked.

GOTA Contact during ASD Spark

GOTA Contact during ASD Spark

We also put together an HF GOTA station in the lobby of the school. This gave the kids a chance to get on the air and experience Amateur Radio first hand. After the kids got over the usual “mic-fright”, they had a lot of fun.

We are looking forward to our next opportunity to participate in ASD’s SPARK Day in the fall. This is one of the most enjoyable events of the year for me.

Fred, AB1OC

High-Altitude Balloon Launch and Tracking


Our HAB at the Edge of Space (GoPro Capture)

Our HAB at the Edge of Space (GoPro Capture)

We made it to the edge of space! The image above was taken from our HAB at an altitude of over 90,000 ft!

After many months of work, raising funds to finance the project, teaching STEM sessions in local High Schools, and an open-house to test the Balloon Platform and to learn about Amateur Radio; our High-Altitude Balloon Project (HAB) Team finally got the chance to launch and track our Balloon. We launched our Balloon from the Elementary School in Winchester, NH.

Setting Up Our Gear

Setting Up Our Gear

Students, Teachers and Club Members came out to be part of the launch and to track our HAB. The first step was to move all of our gear to the center of the athletic fields at the school and organize all of our equipment.

Assembled Flight Platform

Assembled Flight Platform

Next, we attached the GoPro video cameras, satellite tracker and the battery pack for the Flight Computer and 2M APRS transmitter to the flight platform. We used an APRS capable HT to confirm that the flight computer and APRS transmitter were working.

Rigging the Flight Line

Rigging the Flight Line

We rigged the 40 ft. flight line which connected the HAB’s flight platform, recovery parachute and the balloon.

Balloon Inflation

Balloon Inflation

And then came the inflation of the balloon from the Helium tank. The winds were gusting to about 12 mph at this point which made inflating the balloon a little tricky. When filled, the balloon was about 6 ft. in diameter on the ground.

Launch!

Launch!

With both GoPro cameras running on the flight platform, we were ready to launch. A 10 second countdown and the balloon was up and away!

Tracking the HAB

Tracking the HAB

We watched the balloon from the ground as it soared off into the clouds. The 2M APRS tracking system worked perfectly and we spent the next several hours at the launch site, at lunch, and in our cars tracking the HAB on aprs.fi.

HAB’s Flight Path On APRS.fi

HAB’s Flight Path On APRS.fi

Our HAB’s flight path took it across Massachusetts where it reached a maximum altitude of 91,700 ft. above sea level (ASL).

Looking Upward at the Balloon (Near Burst)

Looking Upward at the Balloon (Near Burst)

The balloon reached a diameter of approximately 30 ft before it burst. After the balloon burst, the parachute deployed and the payload descended to a landing in the northeast corner of Rhode Island.

HAB at Recovery Site in Rhode Island

HAB at Recovery Site in Rhode Island

A combination of the APRS transmitter data and the on-board sounder allowed the landing location to be pinpointed and the flight platform recovered with help from a local resident.

The on-board GoPro video cameras captured some awesome video during our HAB’s ascent! All of the media captured by everyone who participated in the launch as well as the APRS data allowed us to produce the video above. Turn up your speakers and give it a play in full-screen mode to enjoy the experience what we shared!

By the time we had launched, school was at an end so we will have to wait until the fall to work with the students and teachers who were part of our STEM project to analyze the data from the flight. All in all, our HAB project has been an amazing experience for all involved. We are planning another HAB STEM experience and launch with additional schools in the fall.

We want to especially thank all of our donors whose generous contributions made this project possible.

Fred, AB1OC

 

Portable 6M Station for SOTA and Contesting


Fred, AB1OC and Curtis, N1CMD Operating

Fred, AB1OC and Curtis, N1CMD Operating

I got really exited, when Jamey, KC1ENX set our Club’s first Summits On The Air (SOTA)/Parks On The Air (POTA) activation for the same day as the June VHF Contest! Jamey choose Pack Monadnock in Miller State Park here in New Hampshire as the site for our activation. With Jamey’s help, we put together a portable 6M station in preparation for the activation.

Solar Panels

Solar Panels

The idea was to use an IC-7300 to create a 100W station and use a Solar/Battery combination to power the setup. Solar/Battery made us “legal” as a SOTA activation. We combined two 90W solar panels which I had with a MPPT solar charing system and two LiPo batteries to create the power system for the activation.

6M Antenna Going Up

6M Antenna Going Up

The antenna system was built around a M2 Antenna Systems 6M3 Yagi and a 18 ft. push up mast from Max-gain systems.

Portable 6M Antenna

Portable 6M Antenna

All of this gear was carried to the site and setup in about an hour. A 25 ft. section of LMR-400UF coax completed the station. The mast was guy’ed with rings which allowed us to turn the mast/antenna combination to point the Yagi in any direction.

Anita, AB1QB and Curtis, N1CMD Operating in the June VHF Contest

Anita, AB1QB and Curtis, N1CMD Operating in the June VHF Contest

Between the SOTA/POTA activation and the June VHF contest, we made a little over 130 contacts on 6m. We did not have any real Es openings so most of our contacts were regional. Having the elevation provided by being on Pack Monadnock made us quite loud for the stations that could hear us. Several of our club members got on 6M and joined the fun. We did have a brief Es opening and managed to work a station in Alabama and one in Florida.

Mike, AB1YK Portable 6M

Mike, AB1YK Portable 6M

Mike, AB1YK has a much more portable 6M setup and used lower power to have some fun on 6M as well.

Al, KC1FOZ and Tom, KC1GGP Operating Portable

Al, KC1FOZ and Tom, KC1GGP Operating Portable

Al, KC1FOZ and Tom, KC1GGP put together a nice station and operated using battery power. Several other club members came out with portable station or to watch and have fun as well.

Our first SOTA/POTA activation was a lot of fun and Anita and I are looking forward to the next one!

Fred, AB1OC

Thirteen Colonies Special Event Begins Saturday!


2017 K2K QSL Card

Thirteen Colonies Special Event – K2K New Hampshire QSL Card

The Thirteen Colonies Special Event begins at 9 am Eastern Time (13:00 UTC) on Saturday, July 1st and ends on July 6th at midnight ET. The K2K NH team will have a full complement of top notch operators on all bands and modes again this year including a dedicated QRP station. We’ve also designed a new QSL card for this year’s special event (above).

2017 Thirteen Colonies Special Event Certificate

2017 Thirteen Colonies Special Event Certificate

Take some time during the event and work K2K New Hampshire for your own copy of our new K2K QSL and don’t forget to send for your certificate. If you work a station from all 13 Colonies, you certificate will indicate a “clean sweep”. There will be two bonus stations that you can work as well. Check out The Thirteen Colonies Special Event Site for all of the details on the event.

This event is a lot of fun for all involved and may well be the largest special event in the world. The QSO count for the event last year was 139,772 contacts in about 6 days! We hope to hear from you during the event and DX stations are especially welcome!

Fred, AB1OC (de K2K New Hampshire QRZ?)

LEO Satellite Contacts via Easy Sat and Linear Transponder Satellites


Satellite Antenna Details

Satellite Station 2.0 Antennas

We recently did a Tech Night at our club on Building and Operating a Satellite Ground Station. As part of my portion of our Tech Night presentation, I recorded several LEO satellite contacts and made videos showing the operation of the computer controlling our Satellite Station 2.0 during these contacts. These videos give an idea of what its like to operate through LEO satellites.

The video above is a recording of a several contacts through SO-50 – an FM “Easy Sat”.

The next video several contacts made through FO-29, a linear transponder satellite.

The distortion that you hear in my voice is a result of my own voice coming back delayed through the satellites.

We will have our Satellite Station 2.0 setup at Field Day this year. If you are local to Nashua, NH; you are welcome to visit us during Field Day and see our Satellite Station in operation.

You can read more about the station used to make these contacts here on our Blog.

Fred, AB1OC

GoKit for Field Day and EMCOMM


Completed VHF/UHF GoKit

Completed VHF/UHF GoKit

We’ve been thinking about building a portable GoKit for VHF/UHF EMCOMM and Field Day Applications for a while now. The following is a list of our requirements for a GoKit –

  • 2m and 70cm operation with FM simplex and repeaters
  • APRS capability and tactical display for portable coordination
  • Digital messaging capability
  • Weather band monitoring capability
  • AC Power with flexible battery backup options

A plan to build our GoKit came together during our trip to the Dayton Hamvention this year.

Kenwood TM-D710GA At Dayton

Kenwood TM-D710GA At Dayton

The heart of any GoKit is the Transceiver. We’ve been using Kenwood equipment for our APRS iGate for some time now and we have had good results with it. Kenwood’s latest 50W transceiver with APRS is the TM-D710GA. This unit provides full support for APRS tactical applications and now includes a built-in GPS receiver making it ideal for our GoKit application.

AvMap GeoSat 6 APRS Tactical Display

AvMap GeoSat 6 APRS Tactical Display

We have been using the Kenwood TM-D710 along with an AvMap GeoSat APRS display in our APRS iGate setup and the combination works very well. The AvMap display lets one see the location of portable and mobile APRS stations on a map display. This arrangement is perfect for coordinating activities in an EMCOMM situation. The AvMap GeoSat 6 APRS display is no longer in production but I was able to locate a nearly new unit on eBay.

3 - iPortable Enclosure

We had a chance to look at the iPortable enclosure at Dayton and decided that their Pro 2 4U deep unit would be a good choice for our GoKit application. The iPortable enclosures are based on a portable rack mount case and include a DC power system, speaker and headphone hookups, a light, and provisions for a cooling fan.

Radio Shelf

Radio Shelf

With all the components in hand, we began the construction of our GoKit. Reliability is important in any portable system like this so we put some time into securely mounting all of the equipment and neatly arranging the cabling. First came the shelf which holds the Kenwood transceiver and a SignaLink USB sound card. A combination of drilling the shelf to secure gear with large cable ties and #8 stainless hardware was used here.

Coax Connector Cables

Coax Connector Cables

Our iPortable case was equipped with both SO-239 and N-connectors on the front panel to allow for antennas and feed lines equipped for either connector type. To make the change over between the connector types easy, we installed separate PL-259 jumper cables for each connector. One simply connects the appropriate jumper to the radio.

Display and Power Shelf

Display and Power Shelf

The power and AvMap display shelf was next. The AvMap display mount was dissembled and modified to accept a custom mounting bracket.

PWRgate Battery Interface and Charger

PWRgate Battery Interface and Charger

The iPortable enclosure was drilled to mount a West Mountain Radio PWRgate to handle backup battery charing and management. The PWRgate supports instantaneous switching between an AC power supply and a backup battery and can accommodate a wide range of battery types and sizes.

Backup Battery

Backup Battery

The PWRgate was configured to properly charge our 18AH AGM backup battery. Note the use of a fuse in series with the battery for safety reasons. We used a Powerwerx SPS-30DM adjustable power supply set to 14.5Vdc to operate our GoKit and to provide proper charging voltage for our AGM battery.

Diamond X-30 Antenna and Mast

Diamond X-30 Antenna and Mast

The last piece of the setup was the antenna. We wanted something that was portable, easy to set up and would provide good performance. We choose a Diamond X-30A 2m/70cm ground plane antenna and mounted it on an 12′ fiberglass push up mast. The feed line is made from 25′ of LMR-400UF coax. Several bungee cords are used to attach the mast to a fence post or other vertical structure.

10 - GoKit In Use

The picture above shows the completed GoKit in operation. We typically set one side of the Kenwood TM-D710GA to operate as an APRS transceiver and Digipeater and the other side to operate on a local repeater or simplex FM. The SignaLink sound card is used with a laptop computer running Fldigi and NBEMS for messaging applications. The iPortable case has a 13.8V lighter socket which connects to a power brick to power our laptop PC.

GoKit Packaged for Transport

GoKit Packaged for Transport

The GoKit is quite portable when closed. All of the equipment and cable connections are enclosed and protected by the case’s removable end caps. We’ve tested our GoKit during our club’s weekly repeater net and it worked great. The first real use of our new GoKit will be at Field Day this year. It will be located in our public information tent and will be used as a “talk-in” system.

Fred, AB1OC

 

Quicker-Turnaround Digital Modes in Experimental Stage for WSJT-X Suite


WSJT Screen

WSJT Screen

WSJT-X developer Joe Taylor, K1JT, weighed in to express his appreciation to all who shared their ideas and experiences using JT9 and JT65 modes during recent multi-hop E-skip openings on 6 meters.

“We are very much aware that a mode with most of the excellent characteristics of JT65, but with faster turnaround time, would be a big winner in such situations,” Taylor commented on behalf of the WSJT-X development team. “We are experimenting with several such possibilities. Tentative goals include 15-second T/R sequences, sensitivity around S/N = –20 dB, occupied bandwidth less than that of JT65, and capability to decode as many as 10 or 20 signals in a 2-kHz bandwidth.”…

Source: Quicker-Turnaround Digital Modes in Experimental Stage for WSJT-X Suite

This is something to follow if you are interested in the JT modes for HF and VHF communications. Our experience is that a new JT variant that would trade S/N margin for a faster QSO segment speed would be just the ticket on many of the HF bands as well as 6m.

  • Fred, AB1OC