A Portable Satellite Station Part 4 – 2.0 Station First Contacts!


Station Packed and Ready for Transport

Station Packed and Ready for Transport

With our new 2.0 Satellite station built, tested, and packed; we were ready to try it in a portable environment. Fortunately, the Nashua Area Radio Club had a Technician License class coming up and we thought that the new station test would be a great way for our students to learn about Amateur Radio Satellites.

Satellite Status from AMSAT Website

Satellite Status from AMSAT Website

Final preparations included checking the operational status of potential satellites on the AMSAT website. The page shown above is like a spotting cluster for LEO Satellites – it shows satellite activity as reported by HAM satellite operators. Using this information, we configured MacDoppler to track the active satellites.

Satellite Pass Predictions

Satellite Pass Predictions

Next, we used MacDoppler to generate pass predicts for the weekend of our Technical Class. We assembled this data for all of the potential satellites and color-coded the available passes to identify those which had the best chance of producing contacts.

With this done, we loaded our portable tower, antennas, and all of the rest of the gear into our pickup truck and transported it to the class site.

Sateliite Antennas Setup Portable

Satellite Antennas Setup Portable

The first step at the class site was to unload all of our gear and move the portable tower to a suitable location. We used a compass to orient the tower to true north and leveled it. We used the weight bags that we made up to anchor the tower securely and then installed the antennas, rotator loops, and control cables. The antenna system worked out very well in the portable environment and was easy to set up.

Satellite Antenna Details

Satellite Antenna Details

Here’s a closer to look at the LMR-400 UF coax cables which connect the antennas to the rest of the system. The loops just behind the antennas are necessary to keep the coax from effecting the pattern of the antennas. The coax cables shown were made long enough to allow the antennas to be rotated through their full travel in the azimuth and elevation directions without binding.

Satellite Station Portable - Radio and Supporting Equipment

Satellite Station Portable – Radio and Supporting Equipment

The final step in the portable setup was to put the IC-9100 Transceiver and Supporting Equipment together in the building and check everything out. As soon as we got everything hooked up and working, we heard an ON4 station through FO-29 which was near the end of a low angle pass. A very good sign!

We took some time to fine tune the calibration of our rotators and to check the operation of the computer controls – everything checked out fine. The video above shows MacDoppler controlling the Azimuth/Elevation rotator and the IC-9100 Transceiver during the testing.

First Contact using New 2.0 Station (AO-85)

First Contact using New 2.0 Station (via AO-85)

With all the setup done, it was time to try to make our first contact. Fortunately, we did not have long to wait. We caught a medium angle pass of AO-85, a U/V Mode FM Easy Sat. With MacDoppler setup and tacking, we immediately heard contacts being made through AO-85. I gave a whistle and adjusted my uplink VFO until I heard my signal coming back through AO-85. I gave a quick CQ call and immediately got a response from Jonathan, NS4L in Virginia, USA! It took on a few seconds to exchange call signs and grid squares and our first contract with our new station was in the log.

Explaining Satellite System to License Class

Explaining Satellite System to License Class

Our Technician License Class students were very interested in the station. We spent some time explaining the setup and demonstrating how it worked. We made more contacts between our class sessions using AO-85 and FO-29 (a V/U Mode Linear Transponder Satellite). Our most interesting contact was with Burt, FG8OJ in Guadeloupe through FO-29. It was great to work DX using the new station during the first time we used it.

We learned several things during our first use of the new station. First, while the 35 ft. maximum separation allowed between the antenna system and the rest of the station is adequate in many applications, the antenna system’s close proximity to the building we were in blocked passes to the west of us with this separation. We are going make up a second set of feed lines using a pair of 100 ft. long 7/8″ hardline coax cables to allow for a greater separation in portable deployments such as this one.

We were glad that we had the Heil Pro 7 Headset with us and we used it for most of our contacts. The separate speaker allowed our students to hear the contacts well and the boom microphone on the Pro 7 Headset eliminated feedback due to our own voice coming back through the satellites. We improvised a mono to stereo converter cable to connect the Heil Pro 7 Headset to one of the two speaker outputs on the IC-9100 Transceiver. This allowed the radio to drive the separate speaker and the headphones at the same time.

We were glad to have the low-noise preamps available. These were especially useful during low-angle satellite passes and the sequencing setup that we built worked well.

All in all, our first test of our new 2.0 Portable Satellite station was a success. Our license classes students enjoyed learning about Amateur Satellites and had fun along with us making contacts through a few of them. Our next goal will be to get packet modes and APRS working with our setup. We plan to do another article in this series when this part of our project is completed. Other articles in this series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 3 – 2.0 Station Radio and Supporting Equipment


Satellite Station Transceiver and Related Equipment

Satellite Station Transceiver and Related Equipment

With the Antenna System for our 2.0 Portable Satellite Station complete, we turned our attention to assembling the Transceiver and supporting equipment. The equipment used for this part of the project includes:

The Icom IC-9100 provides 100W on 2M and 75W on 70 cm which is more than enough power for our application. It also has some nice satellite features such as support for synchronized VFO tracking between the 2M and 70 cm VFOs in the radio. This radio also uses a single USB connection to allow computer control of the radio and creation of a sound card interface on the host computer. A Heil Pro 7 Headset will be used for operator audio to avoid feedback due to our audio coming back from the satellite. The Icom SP-23 speaker is included to allow observers to hear satellite contacts while they are in progress.

Radio Management via MacDoppler

Radio Management via MacDoppler

The MacDoppler software provides automated control of the IC-9100 including mode selection and automatic correction of both VFOs for doppler shift. These features greatly simplify the operation of the radio, especially when satellites with SSB/CW transponders are used.

The video above shows MacDoppler’s management of the IC-9100 Transceiver during a pass of AO-73. The constant adjustments of the VFOs takes care of doppler shift correction and ensure that our signal stays at a fixed position in the transponder passband of linear transponder satellites.

Preamp Sequencers and Output Monitoring

Preamp Sequencers and Output Monitoring

M2 Antenna Systems S3 Sequencers are used to provide control of the Advanced Receiver Research low-noise preamps on our portable tower. One of the nice features of the Icom IC-9100 is that it can be configured to provide separate keying lines for the 2M and 70cm VFOs. This allows a preamp to remain enabled on the receive VFO while the other VFO is in transmit mode with its preamp shutdown by the sequencer. This arrangement is very useful during tuning when one needs to hear your own signal coming back from a satellite. A custom-made cable assembly was made to interconnect the S3 Sequencers with the ACC socket on the IC-9100, the Weatherpack connector on the tower preamp control cable, and DC power.

We used the excellent WaveNode WN-2 Wattmeter again in our portable satellite setup. This is a modular output monitoring system which has sensor for VHF/UHF use as well as voltage, signal quality and other monitoring functions.

DC power for the setup is provided via a Powerwerx SS-30DV Power Supply and a RigRunner 40007U distribution unit. We use this power supply in all of our portable setups. It is light weight, provides plenty of power for a 100W station and accessories, and is quiet from an RF perspective.

Equipment Packing and Protection

Equipment Packing and Protection

With the transceiver test of the station complete, we turned our attention to transporting the setup. Proper protection of the equipment during transport was provided via a large case from Pelican. We combined this with a roller bag and an inexpensive storage bin for documentation and accessories which are not very fragile. We also included our RigExpert antenna analyzer in the setup to make testing of the station during setup in a portable environment easier.

Station Packed and Ready for Transport

Station Packed and Ready for Transport

With all of the assembly and testing of the components of our 2.0 Portable Satellite Station complete, we packed up all the components. We used an inexpensive furniture dolly to allow us to roll the tower around to load and unload it.

We are ready to test our new station in a portable application. More on that in the final article in this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 2 – 2.0 Station Goals and Antenna System


M2 Antenna Systems LEO Pack On Display at Dayton 2016

M2 Antenna Systems LEO Pack on Display at Dayton 2016

We came upon the M2 Antenna Systems booth while walking around the exhibit halls at Dayton last year. M2 had one of their LEO Pack satellite antenna systems on display there. This got us thinking about building a new, more capable version of our portable satellite station. The LEO Pack is a relatively lightweight circularly polarized antenna system for working satellites using the 2 m and 70 cm bands. It turns out that AMSAT members can purchase the LEO Pack at a discount. Starting with the LEO Pack in mind, I began to lay out some goals for a new, 2.0 Portable Satellite Station:

  • Be capable of working all active Amateur LEO Satellites including those using linear transponders and digital modes
  • Be portable and manageable enough to be setup in an hour or less
  • Be simple enough to operate so that HAMs who are new to satellites can make all types of satellite contacts with a relatively short learning curve
  • Be manageable to transport and store
  • Utilize computer controlled antenna tracking to aim the antennas
  • Utilize computer control to manage radio VFOs to compensate for doppler shift
  • Be easy to transport and store
Computer Controlled Satellite Station Via MacDoppler

Computer Controlled Satellite Station via MacDoppler Software

We decided to take a computer controlled approach for both antenna aiming and Transceiver VFO management to meet our goal of making the station simple to operate for new satellite operators. After some research on the available options, we choose MacDoppler from Dog Park Software Ltd. for this purpose. MacDoppler runs under Mac OS/X and works well on our MacBook Air laptop computer which is very portable. This program also has broad support for many different rotator and transceiver platforms and is very easy to understand and use. Finally, the program features high quality graphics which should make the station more interesting to folks with limited or no experience operating through Amateur Satellites.

With the satellite tracking software chosen, we made selections for the other major components in the 2.0 Portable Satellite Station as follows:

I will explain these choices in more detail as our article series proceeds.

Glen Martin Roof Tower

Glen Martin 4.5′ Roof Tower

Our solution to making the antenna system portable is built around a Glen Martin 4.5′ Roof Tower. This short tower is a high-quality piece made of extruded aluminum parts. The tower is very sturdy when assembled and is light in weight. We added a pair of extended “feet” to the tower which are fabricated from 36″ x 2″ x 1 /4″ strap steel. This gives the tower a firm base to sit on and allows us to use sandbags to weight it down (more on this later).

Our chosen Yaesu G-500 AZ/EL Rotator is a relatively inexpensive Azimuth/Elevation rotator which is suitable for light-weight satellite antennas such as those in the LEO Pack. This rotator can be installed as a single unit on the top of a tower or separated using a mast. We choose the latter approach as it is mechanically more robust and helps to keep the center of gravity for our portable antenna system low for improved stability.

Yaesu G-5500 Elevation Rotator

Yaesu G-5500 Elevation Rotator

Separating the Yaesu AZ/EL rotator requires as short mast and a thrust bearing to be used. The mast was made from an 1-3/4″ O.D. piece of EMT tubing from our local hardware store. The thrust bearing is a Yaesu GS-065 unit. Both of these pieces fit nicely in the Glen Martin Tower. The thrust bearing provides support for the LEO Pack and G-500 elevation rotator and greatly reduces stress on the azimuth rotator. We also added a Yaesu GA-300 Shock Absorber Mount to the azimuth rotator. This part provides shock isolation for and reduces strain on the azimuth rotator during the frequent starts and stops which occur during satellite tracking.

LMR-400 Feed-lines And Antenna Connection Jumpers

LMR-400UF Feed-lines and Antenna Connection Jumpers

We decided to use LMR-400 UltraFlex coax throughout our antenna system. LMR-400UF coax provides a good balance between size, flexibility and loss for our application. To keep feed-line losses reasonable, we choose to limit the total length of the coax from the transceiver output to the antenna feed point to 50′. This results in a loss of about 1.3 dB on the 70 cm band. The result is that our planned IC-9100 Transceiver which has a maximum output of 75W on 70 cm will deliver a little more than 50W maximum at the feed point of the 70 cm yagi. This should be more that enough power to meet our station goals. Allowing a total of 15′ for antenna rotator loops and transceiver connections, we settled upon 35′ for the length of our coax feed-lines between the tower and the station control point.

Portable Tower Cable Connections and Base Straps

Portable Tower Cable Connections and Base Straps

We added some custom fabricated plates to the tower to act as a bulkhead for feed line and control cable connections and to mount our low-noise preamplifiers. The control connections for the rotators and preamps were made using 6-pin Weatherpack connectors and rotator control cable from DXEngineering. The control cables are also 35′ long to match the length of our coax feed lines. This length should allow the tower and the control point to be separated by a reasonable distance in portable setups.

Low-Noise Preamplifiers From Advanced Receiver Research

Low-Noise Preamplifiers from Advanced Receiver Research

We added tower-mounted Low-Noise Preamplifiers from Advanced Receiver Research to improve the receive sensitivity and noise figure for our satellite antenna system. Two preamps are used – one each for the 2 m and one for 70 cm antennas. While these units can be RF switched, we decided to include the preamp control lead in our control cable to allow for control of the preamp switching via sequencers. This was done to provide an extra measure of protection for the preamps.

Levels And Compass For Tower Setup

Levels and Compass for Tower Setup

We added a compass and pair of bubble levels to the tower assembly to make it easier to orient and level it during setup. This picture above also shows the Yaesu shock absorbing mount for the azimuth rotator.

Weight Bags To Anchor Portable Tower

Weight Bags to Anchor Portable Tower

Finally, we added a set of weight bags to securely anchor the tower when it is set up in a portable environment. These bags are filled with crushed stone and fasten to the legs of the Glen Martin tower with velcro straps.

LEO Pack Antenna Parts

LEO Pack Antenna Parts

With the tower and rotator elements complete, we turned our attention to the assembly of the M2 LEO Pack. The LEO pack consists of two circularly polarized yagis for the 2m and 70 cm bands. The 2m Yagi is an M2 Systems 2MCP8A which has 8 elements (4 horizontal and 4 vertical) and provides 9.2 dBic of forward gain. The 70 cm Yagi is an M2 Systems 436CP16 with 16 elements (8 horizontal and 8 vertical) and provides 13.3 dBic of forward gain. Both Yagi’s are meant to be rear mounted on an 8.5′ aluminum cross boom which is included in the LEO Pack. The picture above shows all of the parts for the two antennas before assembly. It took us about a 1/2 day to assemble and test the antennas and both produced the specified SWR performance when assembled and test in clear surroundings.

Assembled LEO Pack On Portable Tower

Assembled LEO Pack on Portable Tower

The picture above shows the assembled LEO pack on the portable tower. We attached a short 28″ piece of mast material to the cross boom as a counterweight to provide better overall balance and to minimize strain on the elevation rotator. The antennas and the two outer sections of the mast can be easily removed to transport the antenna system.

2m Circularly Polarized Yagi Feed Point

2m Circularly Polarized Yagi Feed Point

The LEO Pack yagis achieve circular polarization via a matching network which drives the vertical and horizontal sections of the antennas with a 90 degree phase shift. The phase shift (and a final 50 ohm match) is achieved using 1/4 wave delay lines made of coax cables. We configured our antennas for right-hand circular polarization. The choice between right and left hand circular polarization is not a critical one in our LEO satellite application as most LEO satellites are not circularly polarized. The advantage of circular polarization in our application is the minimization of spin fading effects.

Green Heron RT-21 Az/El Rotator Controller

Green Heron RT-21 AZ/EL Rotator Controller

The final step in the construction of our antenna system was to add the rotator controller and test the computer aiming system. We have had very good results using Green Heron Engineering rotator controllers in our home station so we selected their RT-21 AZ/EL rotator controller for this application. The RT-21 AZ/EL rotator controller is really two rotator controllers in a single box. The rotator control parameters such as minimum and maximum rotator speed, ramp, offset, over travel and others can be independently set for each rotator.

Rotator Test Using MacDoppler

Rotator Test Using MacDoppler

The RT-21 AZ/EL Rotator Controller connects to our computer via a pair of USB cables. We run Green Heron’s GH Tracker software on our MacBook Air laptop to manage the computer side of the rotator controller and to provide a UDP protocol interface to the MacDoppler tracking software. The picture above shows the test setup used to verify the computer controlled antenna pointing system.

Mixed OS/X and Windows Software Environment

Mixed OS/X and Windows Software Environment

One challenge associated with selecting a Mac OS/X platform for computer control is what to do about the inevitable need to run Windows software as part of the system. In addition to the GH Tracker software, the WaveNode WN-2 Wattmeter and digital modem software for satellite/ISS APRS and other applications require a Windows run-time environment. To solve this problem, we use a virtual machine environment implemented using VMware Fusion and Windows 10 64-bit on our MacBook Air Laptop along with Mac OS/X. Using the Unity feature of VMware Fusion allows us to run windows apps such as GH Tracker as if they were native Mac OS/X apps. The picture above shows an example of this.

Rotator Controller and Software Configuration

Rotator Controller and Software Configuration

With the antennas removed from the cross boom, we tested the operation of the computer controlled tracking system. The Yaesu G-5500 AZ/EL Rotator have some limits as to its pointing accuracy and backlash performance.  Experimentation with the combination of  the RT-21 AZ/EL rotator controller, GH Tracker and MacDoppler setups was required to achieve smooth overall operation. We finally settled on a strategy of “lead the duck” tracking. The idea here is to set up the rotators so that they over-travel by a degree or so when the computer adjusts them and couple this with a relatively wide 2-3 degree tracking resolution. This maximizes the overall accuracy of the pointing system and minimizes the tendency towards constant start-stop operation of the rotators during satellite tracking. Our current configuration for all of the elements involved in the tracking system is shown above.

With the antenna system complete and tested, we can move onto the next step in our project – the construction of a computer controlled transceiver system. We will cover this element in the next part  in this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 1 – A Simple Station for AO-85


Portable Satellite Station Contact

Portable Satellite Station Contact

Our club, the Nashua Area Radio Club, has quite a few members who are interested in space communications. We decided to build a simple portable satellite station last year for our 2016 Field Day operation to learn about satellite communications and to create something new for folks to work with during 2016 Field Day.

Simple Portable Satellite Station

Simple Portable Satellite Station

Our 1.0 Portable Satellite Station was a relatively simple setup built around an HT, an Elk 2m/70cm satellite antenna, and some gear to improve the receive performance and transmit power output of the HT. All of the gear was mounted on a board to make it easy to transport and it is powered from a LIPO rechargeable battery. The gear in our 1.0 station is made up of the following:

Improved Satellite Antenna Mount

Improved Satellite Antenna Support

Our first contacts with our 1.0 station were made using the Elk Antenna hand-held. Later, we created a “plumber’s special” setup with a camera tripod to make pointing the antenna easier. Note the angle meter from a local hardware store which measures the elevation angle of the antenna.

AO-85 (Fox-1A) U/V Mode FM Cube Sat

AO-85 (Fox-1A) U/V Mode FM Cube Satellite

This setup worked great for making FM contacts through AO-85 (Fox-1A), a  U/V mode FM EasySat. We used the 1.0 station on multiple occasions including Field Day 2016 and several of our club members used it to make their first satellite contacts. The Full-Duplex HT allowed us to hear our own signal coming back from the satellite which was an important tool to help with aiming the antenna properly. The ELK Dual-Band antenna is also a good choice because it uses a single feed point and a single polarization for both the 2m and 70cm bands.

1.0 Station Team Operating Approach

1.0 Station Team Operating Approach

We used the team operating approach outlined above. This worked especially well for new folks who had not made a satellite contact before as it enabled each of the three team members involved in making the contact to focus on a specific part of the contact. We used orange plastic tent stakes to make AOS, Time of Closest Approach, and EOS to mark headings for each satellite pass. Small flashlights used at the stakes made them glow for night-time passes.

We certainly had a lot of fun with our 1.0 Satellite Station and I expect that we’ll continue to use it. As we gained a little experience with AO-85, we decided that we wanted to build a more capable Portable Satellite Station which we could use to operate with linear transponder satellites and which included a tracking system and better antennas. I know from experience with our home satellite station that DX contacts are possible using higher altitude linear transponder satellites like FO-29.

We would also like to be able to use APRS and other digital modes through satellites as well as receive SSTV pictures from space.

These goals have become the basis for building our Portable Satellite Station 2.0. More on the new station in Part 2 of this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

73,

Fred (AB1OC)

A STEM Learning Project for Young People


High Altitude Balloon At The Edge Of Space

High Altitude Balloon At The Edge Of Space

As some of you may already know, Anita and I have been working with our local Radio Club on a project to promote STEM learning and interest in Amateur Radio among young people in our area. The idea is to work with kids grades 7-12 to plan, build, launch and recover a High-Altitude Balloon carrying Amateur Radio. Our balloon should be able to reach an altitude of about 100,000 ft before it bursts and the payload returns to earth via a parachute system. The payload will include a computer, GPS and a 2 meter APRS transmitter to record the balloon’s flight track, atmospheric data and altitude throughout the flight. The balloon will also carry a video camera and will capture a video record of the entire flight. You can learn more about our project here.

Project Team Members Will Analyze and Report On Scientific Data

Project Team Members Will Analyze and Report On Scientific Data

We are working with local schools to put together a team of young people to plan and execute our project. This will include designing the on-board science experiments, analyzing the data collected and providing a presentation about what was learned to fellow students and others who are interested.

You can learn more about our project and view a video that shows what our balloon flight will be like on our Club website. This project is part of our Club’s on-going program to promote interest in Amateur Radio among young people. The folks at HAMNation recently featured a video which included some information about our club’s activities for young people as well.

We are working to raise the necessary funds to enable the project to be completed during the current school year. We have setup a GoFundMe page to facilitate the fund raising aspect of our project. We know that we have many readers around the world who follow our blog and it would be wonderful if some of our readers could help us by contributing to funding our project.

Anita and I will continue to post information about our project here.

Best and 73,

Fred (AB1OC)

Giving Back To Amateur Radio


Nashua Area Radio Club - 2016 Year In Review

Nashua Area Radio Club – 2016 Highlights

Anita, AB1QB and I have spent a good deal of time this past year helping the Nashua Area Radio Club here in Nashua, NH USA as a way to give back to the Amateur Radio Service. Our work with the Nashua ARC has produced some of the most enjoyable and memorable times of our Amateur Radio experience.

Teaching Nashua Area Radio Club Hosted License Classes

Teaching Nashua Area Radio Club Hosted License Classes

In particular, our contributions to the work that our club is doing around helping people to earn licenses and introducing young people to the Amateur Radio Service has been most rewarding.

Abby, KC1FFX Operating a GOTA Station During Nashua ARC Youth Day

Abby, KC1FFX Operating our GOTA Station during Nashua ARC Youth Day

We recently produced a 2016 Highlights video about our Club’s activities and the club’s contributions to the Amateur Radio hobby. We thought that some of our readers here might enjoy the video. You can view it on our club’s home page here.

73,

Fred, AB1OC

 

Fall Antenna Projects – A New Low-Band Receive Antenna System


NCC-1 Receive Antenna System Control Unit and Filters

NCC-1 Receive Antenna System Control Unit and Filters

Anita and I like to take advantage of the mild fall weather to do antenna projects at our QTH. We have completed two such projects this fall – the installation of a Two-Element Phased Receive System and a rebuild of the control cable interconnect system at the base of our tower.

NCC-1 Receive Antenna System Components

NCC-1 Receive Antenna System Components

Our first project was the installation of a DXEngineering NCC-1 Receive Antenna System. This system uses two receive-only active vertical antennas to create a steerable receive antenna system. The combination can work on any band from 160m up to 10m. We set ours up for operation on the 80m and 160m bands.

NCC-1 Receive System Antenna Pattern

NCC-1 Receive System Antenna Pattern

The NCC-1 System can be used to peak or null a specific incoming signal. It can also be applied to a noise source to null it out. The direction that it peaks or nulls in is determined by changing the phase relationship between the two Active Antenna Elements via the NCC-1 Controller.

NCC-1 Filter Installation

NCC-1 Filter Installation

The first step in the project was to open the NCC-1 Control Unit to install a set of 80m and 160m bandpass filter boards. These filters prevent strong out-of-band signals (such as local AM radio stations) from overloading the NCC-1. The internal switches were also set to configure the NCC-1 to provide power from an external source to the receive antenna elements through the connecting coax cables.

Installed Active Receive Antenna Element

Installed Active Receive Antenna Element

The next step in the project was to select a suitable location for installing the Receive Antenna Elements. We choose a spot on a ridge which allowed the two Antenna Elements to be separated by 135 ft (for operation on 160m/80m) and which provided a favorable orientation toward both Europe and Japan. The antenna elements use active circuitry to provide uniform phase performance between each element’s 8 1/2 foot whip antenna and the rest of the system. The antenna elements should be separated by a 1/2 wavelength or more on the lowest band of operation from any towers or transmit antennas to enable the best possible noise rejection performance.

Received Antenna Element Closeup

Received Antenna Element Closeup

The two Antenna Elements were assembled and installed on 5 ft rods which were driven into the ground. To ensure a good ground for the elements and to improve their sensitivity, we opted to install 4 radials on each antenna (the black wires coming from the bottom of the unit in the picture above). The Antenna Elements are powered through 75 ohm flooded coax cables which connect them to the NCC-1 Control Unit in our shack. The coax cable connections in our setup are quite long –  the longer of the pair being approximately 500 ft. The use of flooded coax cable allows the cables to be run underground or buried. Should the outer jacket become nicked, the flooding glue inside the cable will seal the damage and keep water out of the cable.

Receive RF Choke

Receive RF Choke

It is also important to isolate the connecting coax cables from picking up strong signals from nearby AM Radio stations, etc. To help with this, we installed Receive RF Chokes in each of the two coax cables which connect the Antenna Elements to the NCC-1. These chokes need to be installed on ground rods near the Antenna Elements for best performance.

Underground Cable Conduit In Our Yard

Underground Cable Conduit In Our Yard

We ran the coax cables underground inside cable conduits for a good portion of the run between the antenna elements and our shack. The conduits were installed in our yard when we built our tower a few years back so getting the coax cables to our shack was relatively easy.

Receive Antenna Coax Ground System

Receive Antenna Coax Ground System

The last step in the outdoor part of this project was to install a pair of 75 ohm coax surge protectors near the entry to our shack. An additional ground rod was driven for this purpose and was bonded to the rest of our station’s ground system. We routed both of the 75 ohm coax cables from the two Antenna Elements through surge protectors and into our shack. Alpha-Delta makes the copper ground rod bracket shown in the picture for mounting the surge protectors on the ground rod.

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

The installation work in our shack began with the construction of a larger shelf to hold all of our antenna control equipment and to make space for the NCC-1. The two incoming coax cables from the Antenna Elements were connected to the NCC-1.

microHAM Station Master Deluxe Antenna Controller

microHAM Station Master Deluxe Antenna Controller

Antenna switching and control in our station is handled by a microHAM System. Each radio has a dedicated microHAM Station Master Deluxe Antenna Controller which can be used to select separate transmit and receive antenna for the associated radio. The microHAM system allows our new Receive Antenna System to be shared between the 5 radios in our station.

Antenna Switching Matrix

Antenna Switching Matrix

The first step in integrating the Receive Antenna System was to connect the output of the NCC-1 to the Antenna Switching Matrix outside our shack. We added a low-noise pre-amp (shown in the upper left of the picture above) to increase the sensitivity of the Antenna System. The blue device in the picture is a 75 ohm to 50 ohm matching transformer which matches the NCC-1’s 75 ohm output to our 50 ohm radios. The other two pre-amps and transformers in the picture are part of our previously installed 8-Circle Receive Antenna System.

Multi-Radio Sequencer

Multi-Radio Sequencer

The Antenna Elements must be protected from overload and damage from strong nearly RF fields from our transmit antennas. In a single radio station, this can be handled via a simple sequencer unit associated with one’s radio. In a multi-op station such as ours, it is possible for a different radio than the one which is using the Receive Antenna System to be transmitting on a band which would damage the Receive Antenna System. To solve this problem, we built a multi-radio sequencer using one of the microHAM control boxes in our station. The 062 Relay Unit shown above has one relay associated with each of the five radios in our station. The power to the Receive Antenna System is routed through all 5 of these relays. When any radio transmits on a band that could damage the Antenna Elements, the associated relay is automatically opened 25 mS before the radio is allowed to key up which ensures that the system’s Antenna Elements are safely powered down and grounded.

NCC-1 Controls

NCC-1 Controls

So how well does the system work? To test it, we adjusted the NCC-1 to peak and then null a weak CW signal on 80m. This is done by first adjusting the Balance and Attenuator controls on the NCC-1 so that the incoming signal is heard at the same level by both Antenna Elements. Next, the B Phase switch is set to Rev to cause the system to operate in a signal null’ing configuration and the Phase control is adjusted to maximize the null’ing effect on the target signal. One can go back and forth a few times between the Balance and Phase controls to get the best possible null. Finally, the incoming signal is peaked by setting the B Phase switch to Norm.

Peaked And Null'ed CW Signal

Peaked And Null’ed CW Signal

The picture above shows the display of the target CW signal on the radio using the NCC-1 Antenna System. If you look closely at the lower display in the figure (null’ed signal) you can still see the faint CW trace on the pan adapter. The difference between the peak and the null is about 3 S-units or 18 dB.

NCC-1 Used For Noise Cancellation

NCC-1 Used For Noise Cancellation

The NCC-1 can also be used to reduce (null out) background noise. The picture above shows the result of doing this for an incoming SSB signal on 75m. The system display at the top shows an S5 SSB signal in the presence of S4 – S5 noise (the lower display in the picture). Note how clean the noise floor for the received SSB signal becomes when the unit is set to null the noise source which comes from a different direction than the received SSB signal.

We are very pleased with the performance of our new Receive Antenna System. It should make a great tool for DX’ing on the low-bands. It is a good complement to our 8-circle steerable receive system which we use for contesting on 160m and 80m.

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Our other antenna project was a maintenance one. We have quite a number of control leads going to our tower. When we built our station, we placed surge protectors at the base of our tower and routed all of our control leads through exposed connections on these units. Over time, we found that surge protection was not necessary and we also became concerned about the effects that sunlight and weather were having on the exposed connections. To clean all of this up, we installed two DXEngineering Interconnect Enclosures on our tower and moved all the control cable connections inside them.

Inside View Of Interconnect Enclosures

Inside View Of Interconnect Enclosures

We began with a pair of enclosures from DXEngineering and we mounted screw terminal barrier strips on the aluminum mounting plates in each enclosure. The aluminum plates are grounded via copper strap material to our tower.

Closer Look At One Of The Interconnect Enclosures

Closer Look At One Of The Interconnect Enclosures

The picture above shows one of the interconnection boxes. This one is used to connect our two SteppIR DB36 Yagi Antennas and some of the supporting equipment. The barrier strips form a convenient set of test points for troubleshooting any problems with our equipment on the tower. There are almost 100 control leads passing through the two enclosures and this arrangement keeps everything organized and protected from the weather.

With all of our antenna projects complete, we are looking forward to a fun winter of contesting and low-band DX’ing.

73,

Fred, AB1OC