A Portable Satellite Station Part 4 – 2.0 Station First Contacts!


Station Packed and Ready for Transport

Station Packed and Ready for Transport

With our new 2.0 Satellite station built, tested, and packed; we were ready to try it in a portable environment. Fortunately, the Nashua Area Radio Club had a Technician License class coming up and we thought that the new station test would be a great way for our students to learn about Amateur Radio Satellites.

Satellite Status from AMSAT Website

Satellite Status from AMSAT Website

Final preparations included checking the operational status of potential satellites on the AMSAT website. The page shown above is like a spotting cluster for LEO Satellites – it shows satellite activity as reported by HAM satellite operators. Using this information, we configured MacDoppler to track the active satellites.

Satellite Pass Predictions

Satellite Pass Predictions

Next, we used MacDoppler to generate pass predicts for the weekend of our Technical Class. We assembled this data for all of the potential satellites and color-coded the available passes to identify those which had the best chance of producing contacts.

With this done, we loaded our portable tower, antennas, and all of the rest of the gear into our pickup truck and transported it to the class site.

Sateliite Antennas Setup Portable

Satellite Antennas Setup Portable

The first step at the class site was to unload all of our gear and move the portable tower to a suitable location. We used a compass to orient the tower to true north and leveled it. We used the weight bags that we made up to anchor the tower securely and then installed the antennas, rotator loops, and control cables. The antenna system worked out very well in the portable environment and was easy to set up.

Satellite Antenna Details

Satellite Antenna Details

Here’s a closer to look at the LMR-400 UF coax cables which connect the antennas to the rest of the system. The loops just behind the antennas are necessary to keep the coax from effecting the pattern of the antennas. The coax cables shown were made long enough to allow the antennas to be rotated through their full travel in the azimuth and elevation directions without binding.

Satellite Station Portable - Radio and Supporting Equipment

Satellite Station Portable – Radio and Supporting Equipment

The final step in the portable setup was to put the IC-9100 Transceiver and Supporting Equipment together in the building and check everything out. As soon as we got everything hooked up and working, we heard an ON4 station through FO-29 which was near the end of a low angle pass. A very good sign!

We took some time to fine tune the calibration of our rotators and to check the operation of the computer controls – everything checked out fine. The video above shows MacDoppler controlling the Azimuth/Elevation rotator and the IC-9100 Transceiver during the testing.

First Contact using New 2.0 Station (AO-85)

First Contact using New 2.0 Station (via AO-85)

With all the setup done, it was time to try to make our first contact. Fortunately, we did not have long to wait. We caught a medium angle pass of AO-85, a U/V Mode FM Easy Sat. With MacDoppler setup and tacking, we immediately heard contacts being made through AO-85. I gave a whistle and adjusted my uplink VFO until I heard my signal coming back through AO-85. I gave a quick CQ call and immediately got a response from Jonathan, NS4L in Virginia, USA! It took on a few seconds to exchange call signs and grid squares and our first contract with our new station was in the log.

Explaining Satellite System to License Class

Explaining Satellite System to License Class

Our Technician License Class students were very interested in the station. We spent some time explaining the setup and demonstrating how it worked. We made more contacts between our class sessions using AO-85 and FO-29 (a V/U Mode Linear Transponder Satellite). Our most interesting contact was with Burt, FG8OJ in Guadeloupe through FO-29. It was great to work DX using the new station during the first time we used it.

We learned several things during our first use of the new station. First, while the 35 ft. maximum separation allowed between the antenna system and the rest of the station is adequate in many applications, the antenna system’s close proximity to the building we were in blocked passes to the west of us with this separation. We are going make up a second set of feed lines using a pair of 100 ft. long 7/8″ hardline coax cables to allow for a greater separation in portable deployments such as this one.

We were glad that we had the Heil Pro 7 Headset with us and we used it for most of our contacts. The separate speaker allowed our students to hear the contacts well and the boom microphone on the Pro 7 Headset eliminated feedback due to our own voice coming back through the satellites. We improvised a mono to stereo converter cable to connect the Heil Pro 7 Headset to one of the two speaker outputs on the IC-9100 Transceiver. This allowed the radio to drive the separate speaker and the headphones at the same time.

We were glad to have the low-noise preamps available. These were especially useful during low-angle satellite passes and the sequencing setup that we built worked well.

All in all, our first test of our new 2.0 Portable Satellite station was a success. Our license classes students enjoyed learning about Amateur Satellites and had fun along with us making contacts through a few of them. Our next goal will be to get packet modes and APRS working with our setup. We plan to do another article in this series when this part of our project is completed. Other articles in this series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 3 – 2.0 Station Radio and Supporting Equipment


Satellite Station Transceiver and Related Equipment

Satellite Station Transceiver and Related Equipment

With the Antenna System for our 2.0 Portable Satellite Station complete, we turned our attention to assembling the Transceiver and supporting equipment. The equipment used for this part of the project includes:

The Icom IC-9100 provides 100W on 2M and 75W on 70 cm which is more than enough power for our application. It also has some nice satellite features such as support for synchronized VFO tracking between the 2M and 70 cm VFOs in the radio. This radio also uses a single USB connection to allow computer control of the radio and creation of a sound card interface on the host computer. A Heil Pro 7 Headset will be used for operator audio to avoid feedback due to our audio coming back from the satellite. The Icom SP-23 speaker is included to allow observers to hear satellite contacts while they are in progress.

Radio Management via MacDoppler

Radio Management via MacDoppler

The MacDoppler software provides automated control of the IC-9100 including mode selection and automatic correction of both VFOs for doppler shift. These features greatly simplify the operation of the radio, especially when satellites with SSB/CW transponders are used.

The video above shows MacDoppler’s management of the IC-9100 Transceiver during a pass of AO-73. The constant adjustments of the VFOs takes care of doppler shift correction and ensure that our signal stays at a fixed position in the transponder passband of linear transponder satellites.

Preamp Sequencers and Output Monitoring

Preamp Sequencers and Output Monitoring

M2 Antenna Systems S3 Sequencers are used to provide control of the Advanced Receiver Research low-noise preamps on our portable tower. One of the nice features of the Icom IC-9100 is that it can be configured to provide separate keying lines for the 2M and 70cm VFOs. This allows a preamp to remain enabled on the receive VFO while the other VFO is in transmit mode with its preamp shutdown by the sequencer. This arrangement is very useful during tuning when one needs to hear your own signal coming back from a satellite. A custom-made cable assembly was made to interconnect the S3 Sequencers with the ACC socket on the IC-9100, the Weatherpack connector on the tower preamp control cable, and DC power.

We used the excellent WaveNode WN-2 Wattmeter again in our portable satellite setup. This is a modular output monitoring system which has sensor for VHF/UHF use as well as voltage, signal quality and other monitoring functions.

DC power for the setup is provided via a Powerwerx SS-30DV Power Supply and a RigRunner 40007U distribution unit. We use this power supply in all of our portable setups. It is light weight, provides plenty of power for a 100W station and accessories, and is quiet from an RF perspective.

Equipment Packing and Protection

Equipment Packing and Protection

With the transceiver test of the station complete, we turned our attention to transporting the setup. Proper protection of the equipment during transport was provided via a large case from Pelican. We combined this with a roller bag and an inexpensive storage bin for documentation and accessories which are not very fragile. We also included our RigExpert antenna analyzer in the setup to make testing of the station during setup in a portable environment easier.

Station Packed and Ready for Transport

Station Packed and Ready for Transport

With all of the assembly and testing of the components of our 2.0 Portable Satellite Station complete, we packed up all the components. We used an inexpensive furniture dolly to allow us to roll the tower around to load and unload it.

We are ready to test our new station in a portable application. More on that in the final article in this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 2 – 2.0 Station Goals and Antenna System


M2 Antenna Systems LEO Pack On Display at Dayton 2016

M2 Antenna Systems LEO Pack on Display at Dayton 2016

We came upon the M2 Antenna Systems booth while walking around the exhibit halls at Dayton last year. M2 had one of their LEO Pack satellite antenna systems on display there. This got us thinking about building a new, more capable version of our portable satellite station. The LEO Pack is a relatively lightweight circularly polarized antenna system for working satellites using the 2 m and 70 cm bands. It turns out that AMSAT members can purchase the LEO Pack at a discount. Starting with the LEO Pack in mind, I began to lay out some goals for a new, 2.0 Portable Satellite Station:

  • Be capable of working all active Amateur LEO Satellites including those using linear transponders and digital modes
  • Be portable and manageable enough to be setup in an hour or less
  • Be simple enough to operate so that HAMs who are new to satellites can make all types of satellite contacts with a relatively short learning curve
  • Be manageable to transport and store
  • Utilize computer controlled antenna tracking to aim the antennas
  • Utilize computer control to manage radio VFOs to compensate for doppler shift
  • Be easy to transport and store
Computer Controlled Satellite Station Via MacDoppler

Computer Controlled Satellite Station via MacDoppler Software

We decided to take a computer controlled approach for both antenna aiming and Transceiver VFO management to meet our goal of making the station simple to operate for new satellite operators. After some research on the available options, we choose MacDoppler from Dog Park Software Ltd. for this purpose. MacDoppler runs under Mac OS/X and works well on our MacBook Air laptop computer which is very portable. This program also has broad support for many different rotator and transceiver platforms and is very easy to understand and use. Finally, the program features high quality graphics which should make the station more interesting to folks with limited or no experience operating through Amateur Satellites.

With the satellite tracking software chosen, we made selections for the other major components in the 2.0 Portable Satellite Station as follows:

I will explain these choices in more detail as our article series proceeds.

Glen Martin Roof Tower

Glen Martin 4.5′ Roof Tower

Our solution to making the antenna system portable is built around a Glen Martin 4.5′ Roof Tower. This short tower is a high-quality piece made of extruded aluminum parts. The tower is very sturdy when assembled and is light in weight. We added a pair of extended “feet” to the tower which are fabricated from 36″ x 2″ x 1 /4″ strap steel. This gives the tower a firm base to sit on and allows us to use sandbags to weight it down (more on this later).

Our chosen Yaesu G-500 AZ/EL Rotator is a relatively inexpensive Azimuth/Elevation rotator which is suitable for light-weight satellite antennas such as those in the LEO Pack. This rotator can be installed as a single unit on the top of a tower or separated using a mast. We choose the latter approach as it is mechanically more robust and helps to keep the center of gravity for our portable antenna system low for improved stability.

Yaesu G-5500 Elevation Rotator

Yaesu G-5500 Elevation Rotator

Separating the Yaesu AZ/EL rotator requires as short mast and a thrust bearing to be used. The mast was made from an 1-3/4″ O.D. piece of EMT tubing from our local hardware store. The thrust bearing is a Yaesu GS-065 unit. Both of these pieces fit nicely in the Glen Martin Tower. The thrust bearing provides support for the LEO Pack and G-500 elevation rotator and greatly reduces stress on the azimuth rotator. We also added a Yaesu GA-300 Shock Absorber Mount to the azimuth rotator. This part provides shock isolation for and reduces strain on the azimuth rotator during the frequent starts and stops which occur during satellite tracking.

LMR-400 Feed-lines And Antenna Connection Jumpers

LMR-400UF Feed-lines and Antenna Connection Jumpers

We decided to use LMR-400 UltraFlex coax throughout our antenna system. LMR-400UF coax provides a good balance between size, flexibility and loss for our application. To keep feed-line losses reasonable, we choose to limit the total length of the coax from the transceiver output to the antenna feed point to 50′. This results in a loss of about 1.3 dB on the 70 cm band. The result is that our planned IC-9100 Transceiver which has a maximum output of 75W on 70 cm will deliver a little more than 50W maximum at the feed point of the 70 cm yagi. This should be more that enough power to meet our station goals. Allowing a total of 15′ for antenna rotator loops and transceiver connections, we settled upon 35′ for the length of our coax feed-lines between the tower and the station control point.

Portable Tower Cable Connections and Base Straps

Portable Tower Cable Connections and Base Straps

We added some custom fabricated plates to the tower to act as a bulkhead for feed line and control cable connections and to mount our low-noise preamplifiers. The control connections for the rotators and preamps were made using 6-pin Weatherpack connectors and rotator control cable from DXEngineering. The control cables are also 35′ long to match the length of our coax feed lines. This length should allow the tower and the control point to be separated by a reasonable distance in portable setups.

Low-Noise Preamplifiers From Advanced Receiver Research

Low-Noise Preamplifiers from Advanced Receiver Research

We added tower-mounted Low-Noise Preamplifiers from Advanced Receiver Research to improve the receive sensitivity and noise figure for our satellite antenna system. Two preamps are used – one each for the 2 m and one for 70 cm antennas. While these units can be RF switched, we decided to include the preamp control lead in our control cable to allow for control of the preamp switching via sequencers. This was done to provide an extra measure of protection for the preamps.

Levels And Compass For Tower Setup

Levels and Compass for Tower Setup

We added a compass and pair of bubble levels to the tower assembly to make it easier to orient and level it during setup. This picture above also shows the Yaesu shock absorbing mount for the azimuth rotator.

Weight Bags To Anchor Portable Tower

Weight Bags to Anchor Portable Tower

Finally, we added a set of weight bags to securely anchor the tower when it is set up in a portable environment. These bags are filled with crushed stone and fasten to the legs of the Glen Martin tower with velcro straps.

LEO Pack Antenna Parts

LEO Pack Antenna Parts

With the tower and rotator elements complete, we turned our attention to the assembly of the M2 LEO Pack. The LEO pack consists of two circularly polarized yagis for the 2m and 70 cm bands. The 2m Yagi is an M2 Systems 2MCP8A which has 8 elements (4 horizontal and 4 vertical) and provides 9.2 dBic of forward gain. The 70 cm Yagi is an M2 Systems 436CP16 with 16 elements (8 horizontal and 8 vertical) and provides 13.3 dBic of forward gain. Both Yagi’s are meant to be rear mounted on an 8.5′ aluminum cross boom which is included in the LEO Pack. The picture above shows all of the parts for the two antennas before assembly. It took us about a 1/2 day to assemble and test the antennas and both produced the specified SWR performance when assembled and test in clear surroundings.

Assembled LEO Pack On Portable Tower

Assembled LEO Pack on Portable Tower

The picture above shows the assembled LEO pack on the portable tower. We attached a short 28″ piece of mast material to the cross boom as a counterweight to provide better overall balance and to minimize strain on the elevation rotator. The antennas and the two outer sections of the mast can be easily removed to transport the antenna system.

2m Circularly Polarized Yagi Feed Point

2m Circularly Polarized Yagi Feed Point

The LEO Pack yagis achieve circular polarization via a matching network which drives the vertical and horizontal sections of the antennas with a 90 degree phase shift. The phase shift (and a final 50 ohm match) is achieved using 1/4 wave delay lines made of coax cables. We configured our antennas for right-hand circular polarization. The choice between right and left hand circular polarization is not a critical one in our LEO satellite application as most LEO satellites are not circularly polarized. The advantage of circular polarization in our application is the minimization of spin fading effects.

Green Heron RT-21 Az/El Rotator Controller

Green Heron RT-21 AZ/EL Rotator Controller

The final step in the construction of our antenna system was to add the rotator controller and test the computer aiming system. We have had very good results using Green Heron Engineering rotator controllers in our home station so we selected their RT-21 AZ/EL rotator controller for this application. The RT-21 AZ/EL rotator controller is really two rotator controllers in a single box. The rotator control parameters such as minimum and maximum rotator speed, ramp, offset, over travel and others can be independently set for each rotator.

Rotator Test Using MacDoppler

Rotator Test Using MacDoppler

The RT-21 AZ/EL Rotator Controller connects to our computer via a pair of USB cables. We run Green Heron’s GH Tracker software on our MacBook Air laptop to manage the computer side of the rotator controller and to provide a UDP protocol interface to the MacDoppler tracking software. The picture above shows the test setup used to verify the computer controlled antenna pointing system.

Mixed OS/X and Windows Software Environment

Mixed OS/X and Windows Software Environment

One challenge associated with selecting a Mac OS/X platform for computer control is what to do about the inevitable need to run Windows software as part of the system. In addition to the GH Tracker software, the WaveNode WN-2 Wattmeter and digital modem software for satellite/ISS APRS and other applications require a Windows run-time environment. To solve this problem, we use a virtual machine environment implemented using VMware Fusion and Windows 10 64-bit on our MacBook Air Laptop along with Mac OS/X. Using the Unity feature of VMware Fusion allows us to run windows apps such as GH Tracker as if they were native Mac OS/X apps. The picture above shows an example of this.

Rotator Controller and Software Configuration

Rotator Controller and Software Configuration

With the antennas removed from the cross boom, we tested the operation of the computer controlled tracking system. The Yaesu G-5500 AZ/EL Rotator have some limits as to its pointing accuracy and backlash performance.  Experimentation with the combination of  the RT-21 AZ/EL rotator controller, GH Tracker and MacDoppler setups was required to achieve smooth overall operation. We finally settled on a strategy of “lead the duck” tracking. The idea here is to set up the rotators so that they over-travel by a degree or so when the computer adjusts them and couple this with a relatively wide 2-3 degree tracking resolution. This maximizes the overall accuracy of the pointing system and minimizes the tendency towards constant start-stop operation of the rotators during satellite tracking. Our current configuration for all of the elements involved in the tracking system is shown above.

With the antenna system complete and tested, we can move onto the next step in our project – the construction of a computer controlled transceiver system. We will cover this element in the next part  in this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

A Portable Satellite Station Part 1 – A Simple Station for AO-85


Portable Satellite Station Contact

Portable Satellite Station Contact

Our club, the Nashua Area Radio Club, has quite a few members who are interested in space communications. We decided to build a simple portable satellite station last year for our 2016 Field Day operation to learn about satellite communications and to create something new for folks to work with during 2016 Field Day.

Simple Portable Satellite Station

Simple Portable Satellite Station

Our 1.0 Portable Satellite Station was a relatively simple setup built around an HT, an Elk 2m/70cm satellite antenna, and some gear to improve the receive performance and transmit power output of the HT. All of the gear was mounted on a board to make it easy to transport and it is powered from a LIPO rechargeable battery. The gear in our 1.0 station is made up of the following:

Improved Satellite Antenna Mount

Improved Satellite Antenna Support

Our first contacts with our 1.0 station were made using the Elk Antenna hand-held. Later, we created a “plumber’s special” setup with a camera tripod to make pointing the antenna easier. Note the angle meter from a local hardware store which measures the elevation angle of the antenna.

AO-85 (Fox-1A) U/V Mode FM Cube Sat

AO-85 (Fox-1A) U/V Mode FM Cube Satellite

This setup worked great for making FM contacts through AO-85 (Fox-1A), a  U/V mode FM EasySat. We used the 1.0 station on multiple occasions including Field Day 2016 and several of our club members used it to make their first satellite contacts. The Full-Duplex HT allowed us to hear our own signal coming back from the satellite which was an important tool to help with aiming the antenna properly. The ELK Dual-Band antenna is also a good choice because it uses a single feed point and a single polarization for both the 2m and 70cm bands.

1.0 Station Team Operating Approach

1.0 Station Team Operating Approach

We used the team operating approach outlined above. This worked especially well for new folks who had not made a satellite contact before as it enabled each of the three team members involved in making the contact to focus on a specific part of the contact. We used orange plastic tent stakes to make AOS, Time of Closest Approach, and EOS to mark headings for each satellite pass. Small flashlights used at the stakes made them glow for night-time passes.

We certainly had a lot of fun with our 1.0 Satellite Station and I expect that we’ll continue to use it. As we gained a little experience with AO-85, we decided that we wanted to build a more capable Portable Satellite Station which we could use to operate with linear transponder satellites and which included a tracking system and better antennas. I know from experience with our home satellite station that DX contacts are possible using higher altitude linear transponder satellites like FO-29.

We would also like to be able to use APRS and other digital modes through satellites as well as receive SSTV pictures from space.

These goals have become the basis for building our Portable Satellite Station 2.0. More on the new station in Part 2 of this series. Other articles in the series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

73,

Fred (AB1OC)

2016 ARRL Field Day!


2016 Field Day Site Layout

2016 Field Day Site Layout

I had the privilege of acting as the Field Day Incident Commander for the Nashua Area Radio Club this year. Field Day is the most important operating event for the Nashua Area Radio Club each year. We operated under our club callsign, N1FD and we were 7A here in New Hampshire, USA. We included some new antennas including a Three Element 40m V-Beam, a Satellite Station and a 70cm Digital ATV Station in our operation this year. You can see some of the details which went into the planning of our 2016 Field Day Operation on our Club’s Tech Night Page.

The video above shows highlights from our 2016 Field Day Operation. As you can see, we had a lot of fun at Field Day this year. Our club has 120+ members and we had a large turnout for Field Day. You can see more about our 2016 Field Day operation on our Field Day Page including photos, a score summary and a recap presentation shared at a recent club meeting. I hope that you enjoy sharing our memories from 2016 Field Day.

73,

– Fred, AB1OC

2015 Nashua Area Radio Club Field Day Recap


We had the opportunity to be part of the Nashua Area Radio Club’s 2015 Field Day Operation. Ed, K2TE was our incident commander and he helped to club to put together a great Field Day Operation. We operated under our club callsign, N1FD as 8A. John, W1MBG put together the video above which is a really nice recap of our operation.

Field Day Tower and Beams

Field Day Tower and Beams

The club was very active in WRTC 2014 and, as a result, was able to purchase several of the tower and station kits from the WRTC operation. The heart of our Field Day antenna system was built around two of these towers. One was used for CW and 6m and the other was used for SSB. Both towers had tri-band beams and we used Triplexers and Filters to allow our stations on 20m, 15m and 10m to share the beams on each tower. The towers got us a long way towards our status as an 8A operation.

Wire Antenna Construction

Wire Antenna Construction

My role in the setup part of our Field Day operation was to build our wire antennas. We began with a class covering how to build and tune Delta Loop antennas and we used the newly gained information from our class to build 40m and 80m delta loops at our Field Day site. We also put up a 75m inverted-V antenna in one of the tall trees at our site.

Operating Tents

Operating Tents

We made good use of our WRTC station kits and other gear that our members brought to setup comfortable tents to operate from as well as a public information tent and a food tent.

Operators For The Nashua Area Radio Club

Some Of Our Operators For The Nashua Area Radio Club

Despite the rainy weather on Saturday evening and Sunday, we all stayed comfortable and dry. Shown above is Dave, N1RF, Mike, K1WVO and Mike, K1HIF in our 40m SSB tent.

Field Day 20m SSB Station

Field Day 20m SSB Station

John, W1MBG and I shared a tent which we used for both 10m and 20m SSB operations. The picture above shows our 20m station which was built around an Elecraft KX3 with a PX3 Panadapter and 100w outboard amplifier.

Young Person Operating During field Day

Mikayla Operating With Her Dad During Field Day

Our club has been doing a great deal of work on bringing young people and other new HAMs into the hobby via license classes, outreach to schools and other activities. We carried this work into our Field Day operations with a GOTA station and lots of opportunities for new HAMs and young people to get on the air. Shown above is Wayne, AA9DY helping his daughter Mikayla to make some contacts on 20m SSB phone.

Field Day Feast

Field Day Feast

Anita, AB1QB made us great meals and snacks during our Field Day operation. The food provided all of us a great opportunity to take a break from operating and enjoy each other’s company. Anita and John, W1SMN organized our public information and outreach activities which were very successful. we had over 30 visitors from the general public during our operation this year.

We all had a great time during Field Day this year and we’re looking forward to doing it again next year.

– Fred (AB1OC)

 

 

 

2015 Field Day Station Test


Field Day QTH

Field Day QTH

It’s almost time for the 2015 Field Day Event and we’ve been in high gear getting ready. Anita, AB1QB and I will be operating with the Nashua Area Radio Club, N1FD this year. The club was very active in WRT2014 and we were able to purchase several of the WRTC station and tower kits from that effort. I will be operating the 20m SSB station for Field Day and Anita and I decided to setup our station kit in our backyard last weekend to verify that all of our equipment was ready and in good working order. The first step was to pitch the wall tent from the WRTC kit. The tent and the associated tables/chairs can comfortably hold 3 – 4 people.

Field Data SSB Station Test

Field Data SSB Station Test

I will be using our Elecraft KX3 Transceiver again this year. We’ve added an outboard KXPA100 100w Amplifier to bring the station up to 100w and Elecraft’s very nice PX3 Panadapter. The combination makes a great 100W Field Day Station.

Elecraft KX3 Field Day Station

Elecraft KX3 Field Day Station

The picture above is a closer view of the setup. The KXPA100 Amplifier and the PX3 Panadapter are fully integrated with the KX3 and the combination creates a 100W transceiver with a useful Panadapter. The Panadapter should be helpful for Search and Pounce operation during Field Day. I’ve also added a Behringer HA400 four channel headphone amplifier (the unit on the right on top of the power supply) to the setup. This enables connection of a total of 4 sets of headphones to the station – one for the operator, one for a logger and two more pairs for folks to listen in on the fun. Our club has been doing a great deal of outreach to encourage new HAMs to join the hobby and I built this setup so that some of the new folks can listen in on our operation more easily. I will be using a Heil Pro 7 headset to operate and we will have 3 sets of Heil Pro Set 3 headphones for others to use. The Heil gear is very comfortable, light weight and sounds great over the air.

N1MM+ Logger

N1MM+ Logger

I will be using the excellent N1MM+ Logger for Field Day this year. It was very easy to setup N1MM+ to work with the KX3. I was also able to use it to trigger the KX3’s voice message memories for calling CQ and for calling in Search and Pounce mode. I am doing an N1MM+ clinic at our final Field Day prep meeting tonight to help others in our club to get going on the N1MM+ logger.

Generator Test

Generator Test

One of the many great aspects of Field Day is that it results in a test of one’s emergency equipment and operating skills each year. Our club has a large generator and power distribution system that we all share for Field Day so I used our station test session as a reason to get my smaller generators out for a test run. We have a pair of Honda EU2000 generators which can be used together to generate quite a bit of power. Here’s one of them in use during our station test.

Our club has quite a bit of antenna equipment and we will be putting up two 40 ft towers and tri-band beams with Triplexes and Filters for our 20m, 15m and 10m SSB and CW stations. I’ve built a 40m Delta Loop for our club to use for 40m SSB and we’ll be putting up 40m and 80m inverted-V and dipole antennas to cover those bands. I plan to do another post after Field Day is done on the setup of our antennas and the N1FD operation. I hope to work some of our readers on the air during Field Day this year.

– Fred (AB1OC)