A Portable Satellite Station Part 4 – 2.0 Station First Contacts!


Station Packed and Ready for Transport

Station Packed and Ready for Transport

With our new 2.0 Satellite station built, tested, and packed; we were ready to try it in a portable environment. Fortunately, the Nashua Area Radio Club had a Technician License class coming up and we thought that the new station test would be a great way for our students to learn about Amateur Radio Satellites.

Satellite Status from AMSAT Website

Satellite Status from AMSAT Website

Final preparations included checking the operational status of potential satellites on the AMSAT website. The page shown above is like a spotting cluster for LEO Satellites – it shows satellite activity as reported by HAM satellite operators. Using this information, we configured MacDoppler to track the active satellites.

Satellite Pass Predictions

Satellite Pass Predictions

Next, we used MacDoppler to generate pass predicts for the weekend of our Technical Class. We assembled this data for all of the potential satellites and color-coded the available passes to identify those which had the best chance of producing contacts.

With this done, we loaded our portable tower, antennas, and all of the rest of the gear into our pickup truck and transported it to the class site.

Sateliite Antennas Setup Portable

Satellite Antennas Setup Portable

The first step at the class site was to unload all of our gear and move the portable tower to a suitable location. We used a compass to orient the tower to true north and leveled it. We used the weight bags that we made up to anchor the tower securely and then installed the antennas, rotator loops, and control cables. The antenna system worked out very well in the portable environment and was easy to set up.

Satellite Antenna Details

Satellite Antenna Details

Here’s a closer to look at the LMR-400 UF coax cables which connect the antennas to the rest of the system. The loops just behind the antennas are necessary to keep the coax from effecting the pattern of the antennas. The coax cables shown were made long enough to allow the antennas to be rotated through their full travel in the azimuth and elevation directions without binding.

Satellite Station Portable - Radio and Supporting Equipment

Satellite Station Portable – Radio and Supporting Equipment

The final step in the portable setup was to put the IC-9100 Transceiver and Supporting Equipment together in the building and check everything out. As soon as we got everything hooked up and working, we heard an ON4 station through FO-29 which was near the end of a low angle pass. A very good sign!

We took some time to fine tune the calibration of our rotators and to check the operation of the computer controls – everything checked out fine. The video above shows MacDoppler controlling the Azimuth/Elevation rotator and the IC-9100 Transceiver during the testing.

First Contact using New 2.0 Station (AO-85)

First Contact using New 2.0 Station (via AO-85)

With all the setup done, it was time to try to make our first contact. Fortunately, we did not have long to wait. We caught a medium angle pass of AO-85, a U/V Mode FM Easy Sat. With MacDoppler setup and tacking, we immediately heard contacts being made through AO-85. I gave a whistle and adjusted my uplink VFO until I heard my signal coming back through AO-85. I gave a quick CQ call and immediately got a response from Jonathan, NS4L in Virginia, USA! It took on a few seconds to exchange call signs and grid squares and our first contract with our new station was in the log.

Explaining Satellite System to License Class

Explaining Satellite System to License Class

Our Technician License Class students were very interested in the station. We spent some time explaining the setup and demonstrating how it worked. We made more contacts between our class sessions using AO-85 and FO-29 (a V/U Mode Linear Transponder Satellite). Our most interesting contact was with Burt, FG8OJ in Guadeloupe through FO-29. It was great to work DX using the new station during the first time we used it.

We learned several things during our first use of the new station. First, while the 35 ft. maximum separation allowed between the antenna system and the rest of the station is adequate in many applications, the antenna system’s close proximity to the building we were in blocked passes to the west of us with this separation. We are going make up a second set of feed lines using a pair of 100 ft. long 7/8″ hardline coax cables to allow for a greater separation in portable deployments such as this one.

We were glad that we had the Heil Pro 7 Headset with us and we used it for most of our contacts. The separate speaker allowed our students to hear the contacts well and the boom microphone on the Pro 7 Headset eliminated feedback due to our own voice coming back through the satellites. We improvised a mono to stereo converter cable to connect the Heil Pro 7 Headset to one of the two speaker outputs on the IC-9100 Transceiver. This allowed the radio to drive the separate speaker and the headphones at the same time.

We were glad to have the low-noise preamps available. These were especially useful during low-angle satellite passes and the sequencing setup that we built worked well.

All in all, our first test of our new 2.0 Portable Satellite station was a success. Our license classes students enjoyed learning about Amateur Satellites and had fun along with us making contacts through a few of them. Our next goal will be to get packet modes and APRS working with our setup. We plan to do another article in this series when this part of our project is completed. Other articles in this series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

Fall Antenna Projects – A New Low-Band Receive Antenna System


NCC-1 Receive Antenna System Control Unit and Filters

NCC-1 Receive Antenna System Control Unit and Filters

Anita and I like to take advantage of the mild fall weather to do antenna projects at our QTH. We have completed two such projects this fall – the installation of a Two-Element Phased Receive System and a rebuild of the control cable interconnect system at the base of our tower.

NCC-1 Receive Antenna System Components

NCC-1 Receive Antenna System Components

Our first project was the installation of a DXEngineering NCC-1 Receive Antenna System. This system uses two receive-only active vertical antennas to create a steerable receive antenna system. The combination can work on any band from 160m up to 10m. We set ours up for operation on the 80m and 160m bands.

NCC-1 Receive System Antenna Pattern

NCC-1 Receive System Antenna Pattern

The NCC-1 System can be used to peak or null a specific incoming signal. It can also be applied to a noise source to null it out. The direction that it peaks or nulls in is determined by changing the phase relationship between the two Active Antenna Elements via the NCC-1 Controller.

NCC-1 Filter Installation

NCC-1 Filter Installation

The first step in the project was to open the NCC-1 Control Unit to install a set of 80m and 160m bandpass filter boards. These filters prevent strong out-of-band signals (such as local AM radio stations) from overloading the NCC-1. The internal switches were also set to configure the NCC-1 to provide power from an external source to the receive antenna elements through the connecting coax cables.

Installed Active Receive Antenna Element

Installed Active Receive Antenna Element

The next step in the project was to select a suitable location for installing the Receive Antenna Elements. We choose a spot on a ridge which allowed the two Antenna Elements to be separated by 135 ft (for operation on 160m/80m) and which provided a favorable orientation toward both Europe and Japan. The antenna elements use active circuitry to provide uniform phase performance between each element’s 8 1/2 foot whip antenna and the rest of the system. The antenna elements should be separated by a 1/2 wavelength or more on the lowest band of operation from any towers or transmit antennas to enable the best possible noise rejection performance.

Received Antenna Element Closeup

Received Antenna Element Closeup

The two Antenna Elements were assembled and installed on 5 ft rods which were driven into the ground. To ensure a good ground for the elements and to improve their sensitivity, we opted to install 4 radials on each antenna (the black wires coming from the bottom of the unit in the picture above). The Antenna Elements are powered through 75 ohm flooded coax cables which connect them to the NCC-1 Control Unit in our shack. The coax cable connections in our setup are quite long –  the longer of the pair being approximately 500 ft. The use of flooded coax cable allows the cables to be run underground or buried. Should the outer jacket become nicked, the flooding glue inside the cable will seal the damage and keep water out of the cable.

Receive RF Choke

Receive RF Choke

It is also important to isolate the connecting coax cables from picking up strong signals from nearby AM Radio stations, etc. To help with this, we installed Receive RF Chokes in each of the two coax cables which connect the Antenna Elements to the NCC-1. These chokes need to be installed on ground rods near the Antenna Elements for best performance.

Underground Cable Conduit In Our Yard

Underground Cable Conduit In Our Yard

We ran the coax cables underground inside cable conduits for a good portion of the run between the antenna elements and our shack. The conduits were installed in our yard when we built our tower a few years back so getting the coax cables to our shack was relatively easy.

Receive Antenna Coax Ground System

Receive Antenna Coax Ground System

The last step in the outdoor part of this project was to install a pair of 75 ohm coax surge protectors near the entry to our shack. An additional ground rod was driven for this purpose and was bonded to the rest of our station’s ground system. We routed both of the 75 ohm coax cables from the two Antenna Elements through surge protectors and into our shack. Alpha-Delta makes the copper ground rod bracket shown in the picture for mounting the surge protectors on the ground rod.

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

The installation work in our shack began with the construction of a larger shelf to hold all of our antenna control equipment and to make space for the NCC-1. The two incoming coax cables from the Antenna Elements were connected to the NCC-1.

microHAM Station Master Deluxe Antenna Controller

microHAM Station Master Deluxe Antenna Controller

Antenna switching and control in our station is handled by a microHAM System. Each radio has a dedicated microHAM Station Master Deluxe Antenna Controller which can be used to select separate transmit and receive antenna for the associated radio. The microHAM system allows our new Receive Antenna System to be shared between the 5 radios in our station.

Antenna Switching Matrix

Antenna Switching Matrix

The first step in integrating the Receive Antenna System was to connect the output of the NCC-1 to the Antenna Switching Matrix outside our shack. We added a low-noise pre-amp (shown in the upper left of the picture above) to increase the sensitivity of the Antenna System. The blue device in the picture is a 75 ohm to 50 ohm matching transformer which matches the NCC-1’s 75 ohm output to our 50 ohm radios. The other two pre-amps and transformers in the picture are part of our previously installed 8-Circle Receive Antenna System.

Multi-Radio Sequencer

Multi-Radio Sequencer

The Antenna Elements must be protected from overload and damage from strong nearly RF fields from our transmit antennas. In a single radio station, this can be handled via a simple sequencer unit associated with one’s radio. In a multi-op station such as ours, it is possible for a different radio than the one which is using the Receive Antenna System to be transmitting on a band which would damage the Receive Antenna System. To solve this problem, we built a multi-radio sequencer using one of the microHAM control boxes in our station. The 062 Relay Unit shown above has one relay associated with each of the five radios in our station. The power to the Receive Antenna System is routed through all 5 of these relays. When any radio transmits on a band that could damage the Antenna Elements, the associated relay is automatically opened 25 mS before the radio is allowed to key up which ensures that the system’s Antenna Elements are safely powered down and grounded.

NCC-1 Controls

NCC-1 Controls

So how well does the system work? To test it, we adjusted the NCC-1 to peak and then null a weak CW signal on 80m. This is done by first adjusting the Balance and Attenuator controls on the NCC-1 so that the incoming signal is heard at the same level by both Antenna Elements. Next, the B Phase switch is set to Rev to cause the system to operate in a signal null’ing configuration and the Phase control is adjusted to maximize the null’ing effect on the target signal. One can go back and forth a few times between the Balance and Phase controls to get the best possible null. Finally, the incoming signal is peaked by setting the B Phase switch to Norm.

Peaked And Null'ed CW Signal

Peaked And Null’ed CW Signal

The picture above shows the display of the target CW signal on the radio using the NCC-1 Antenna System. If you look closely at the lower display in the figure (null’ed signal) you can still see the faint CW trace on the pan adapter. The difference between the peak and the null is about 3 S-units or 18 dB.

NCC-1 Used For Noise Cancellation

NCC-1 Used For Noise Cancellation

The NCC-1 can also be used to reduce (null out) background noise. The picture above shows the result of doing this for an incoming SSB signal on 75m. The system display at the top shows an S5 SSB signal in the presence of S4 – S5 noise (the lower display in the picture). Note how clean the noise floor for the received SSB signal becomes when the unit is set to null the noise source which comes from a different direction than the received SSB signal.

We are very pleased with the performance of our new Receive Antenna System. It should make a great tool for DX’ing on the low-bands. It is a good complement to our 8-circle steerable receive system which we use for contesting on 160m and 80m.

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Our other antenna project was a maintenance one. We have quite a number of control leads going to our tower. When we built our station, we placed surge protectors at the base of our tower and routed all of our control leads through exposed connections on these units. Over time, we found that surge protection was not necessary and we also became concerned about the effects that sunlight and weather were having on the exposed connections. To clean all of this up, we installed two DXEngineering Interconnect Enclosures on our tower and moved all the control cable connections inside them.

Inside View Of Interconnect Enclosures

Inside View Of Interconnect Enclosures

We began with a pair of enclosures from DXEngineering and we mounted screw terminal barrier strips on the aluminum mounting plates in each enclosure. The aluminum plates are grounded via copper strap material to our tower.

Closer Look At One Of The Interconnect Enclosures

Closer Look At One Of The Interconnect Enclosures

The picture above shows one of the interconnection boxes. This one is used to connect our two SteppIR DB36 Yagi Antennas and some of the supporting equipment. The barrier strips form a convenient set of test points for troubleshooting any problems with our equipment on the tower. There are almost 100 control leads passing through the two enclosures and this arrangement keeps everything organized and protected from the weather.

With all of our antenna projects complete, we are looking forward to a fun winter of contesting and low-band DX’ing.

73,

Fred, AB1OC

 

Software Defined Radios – The Future of Amateur Radio?


Modern SDR Example - FlexRadio 6000 Series

Modern SDR Example – FlexRadio 6000 Series

Computers and Digital Signal Processing already play a big role in recent Amateur Radio transceivers. Many HAMs have a good understanding of these features and regularly use them for all manner of filtering, noise reduction and signal processing tasks while on the air. We’ve also seen more and more radios with Spectrum Scopes which make it easier to visualize what is on a given band in real time. Thanks to increasing volumes in color displays, Digital Signal Processor (DSP) applications and low-cost processors, these capabilities are now common – even on entry-level HF transceivers.

Software Defined Radios (SDRs) are the next logical step in this evolution. SDRs are not new, they have been around for some time now. SDR technology has continued to improve as the cost and performance of Analog to Digital Converters, Programmable Logic Devices and other processors that make up the hardware side of SDRs have improved. We are now to the point where it is possible to build an SDR for Amateur Radio applications which can directly sample RF at frequencies as high as 150 MHz.

Direct Sampling SDR receiver designs have some important advantages over more conventional single conversion and super-heterodyne receiver (i.e. multiple conversion) designs. These include:

  • Higher dynamic range
  • Low phase noise
  • Ability to cover multiple bands simultaneously with multiple receivers
  • Very high-quality spectrum displays
  • Flexible, high-performance filters
  • The ability to add new modulation schemes and other features via software updates

The first two items above (dynamic range and phase noise) are particularly important as they result in receiver performance which is significantly better than that which can be achieved with the best direct and superhet designs. Take for example a busy contest environment when a band is very crowded (ex. 40m at night in a worldwide DX phone contest). There are many strong signals crowded closely together on the band. Even the best conventional design receivers will have trouble hearing moderate and weak signals in this environment. The problem is that the strong signals tend to overload the analog circuitry in the conversion stages of conventional radios which produces a great deal of Intermodulation Distortion Design products. Phase noise also compounds this problem.

A direct sampling SDR converts the incoming RF signals with high dynamic range Analog to Digital conversion and then performs all of the filtering and demodulation of the incoming signals in software. This approach limits the potential for Intermodulation Distortion with an end result that all of the signals on the band (including the weaker ones) are much clearer. This approach also allows very high order filtering to be applied in the RF domain which results in greatly improved selectivity and rejection of closely spaced adjacent signals with minimal distortion.

By now some may be think that this all sounds great but I don’t want to have to use my computer to make QSOs. There is good news on this front as well. We are beginning to see the major transceiver manufacturers introduce direct sampling SDR technology in radios with conventional “buttons and knobs” interfaces.

Icom IC-7300

Icom IC-7300 (Pending US Release)

New designs like the Icom IC-7300 can provide a way to gain the performance and feature advantages of an SDR in a radio which has a more conventional interface. The entry of the major manufacturers into the direct sampling space and the resulting competition should help to lower prices for all types of SDRs.

RTL-SDR Dongle

RTL-SDR Dongle

Want to give SDR technology a try without spending a lot of $? There are several very good SDR Dongles available along with SDR software at a minimal cost. Dongles are typically receive-only but some can also transmit as very lower power. The use of this technology in digital TV receivers and set-top boxes has made the cost of SDR Dongles very low and there is some very good SDR software available for free on the web. Dongles are generally broad coverage receivers and they can also be used to listen to signal outside the Amateur Bands.

It is interesting to follow the rapid evolution of SDR technology. We recently integrated a FlexRadio-6700 SDR into our station to enable us to operate remotely via the internet. You can read more about this project on our blog.

– Fred (AB1OC)

2014 Amateur Radio Highlights


2014 Readers Around The World

2014 Readers Around The World

It is once again time for our annual 2014 Year in Review post. First, I’d like to thank our readers for their continued interest in our Blog. Our blog was viewed about 100,00 times in 2014 from 165 countries around  the world. You, our readers have made 2014 our busiest year yet and this provides Anita (AB1QB) and me with great encouragement to continue to provide content for our readers.

2014 was a very busy year in Amateur Radio for us. Our activities included a continued focus on station building, contesting, WRTC 2014, special events, providing presentations to help other in the hobby learn about new things, attending several HAM Events, progress on operating awards, and most importantly – time spent on the air operating.

microHAM Station Master Deluxe Antenna Controller

microHAM Station Master Deluxe Antenna Controller

We upgraded our fixed station to include a microHAM Station Automation system this year. This was a major project that added some nice SO2R capabilities to our Multi-one station as well as automated the sharing of our antennas between our two SO2R Operating positions. More of this project can be found here:

Eggbeater Antennas And Preamps SystemsOn Tower

Eggbeater LEO Satellite Antennas And Preamps Systems On Tower

We also added LEO Satellite capabilities to our station with the addition of some new antennas and electronics on our tower. This allowed us to make our first contacts through LEO birds with linear transponders. Our articles on this project include:

Scorpion SA-680 Screwdriver Antenna

Our Mobile HF Station – Screwdriver Antenna

Our final major station building project was the construction of a state of the art mobile HF station in our Ford F-150 pickup truck. We did this project in phases starting with a simple setup using a 100W radio and HAM Stick antennas through the installation of a Screwdriver Antenna System for the 160m – 10m HF bands and concluding with the installation of an amplifier to enable high power mobile HF operation. You can view the articles on this project here:

AB1OC Operating In CQ WPX SSB

AB1OC Operating In the 2014 CQ WPX SSB

Anita (AB1QB) and I continued to be active in several contests this year. We both continued to develop our skills as contesters and our scores and place in the rankings reflected this. You can read more about our contesting activities and what we learned in the following articles:

Hollis Site Support Team And Referee

WRTC 2014 Hollis Site Competitors, Support Team And Referee

We were also fortunate to host one of the WRTC 2014 competition sites. Along with our friend Scott Anderson, NE1RD, Anita and I acted as site managers for the only WRTC 2014 Competition Site in New Hampshire. You can read more about our WRTC 2014 experiences here.

13 Colonies Special Event QSL Card For K2K New Hampshire

13 Colonies Special Event QSL Card For K2K New Hampshire

Special event operations were a particularly fun part of our on air activities in 2014. We operated as K2K, New Hampshire in the 13 Colonies Special Event, W1AW/1 as part of the ARRL Centennial QSO Party, and as N1FD Celebrating the 35th Anniversary of the Nashua Area Radio Club. It’s great fun to operate in these events and the experience running the pileups that result continued to help Anita and me to develop our operating and contesting skills.

Introduction To The DXLab Suite

Introduction To The DXLab Suite

We make it a priority to develop a significant amount of our Amateur Radio time to helping others in the hobby learn new things. In addition to writing this Blog, Anita and I try to create and deliver several presentations each year on a variety of topics of interest to the Amateur Radio Community. Our presentation this year included an update of our presentation on Amateur Radio Station Design and Construction and an Introductory Presentation on the DXLab Software Suite. We are always interested in working with Amateur Radio Clubs to deliver the presentation either in person where practice or over the web.

Anita (AB1QB) and I with Bob Heil (TBD)

Anita (AB1QB) and I with Bob Heil (K9EID)

We had the fortune to meet some of the legends in Amateur Radio this past year. Anita and I had the opportunity to get meet Bob Heil, K9EID and to appear on his Ham Nation podcast. Bob is an amazing gentlemen and we feel truly fortunate to have the opportunity to get to know him. We also had the opportunity to meet Fred Lloyd, AA7BQ, the President and Founder of QRZ.com. Fred visited our station and did an article about our station on QRZ.com. Anita and I both learned a great deal about HAM Radio and how it came to be what it is today as a result of the time these fine folks spent with us.

Joe Taylor's WSJT Presentation

Joe Taylor’s WSJT Presentation At the ARRL Centennial Convention

Amateur Radio Conventions and HAM Fests were a major part of our Amateur Radio fun again this year. We were fortunate to attend and speak at the ARRL Centennial Convention in Hartford, CT USA this year – truly a once in a lifetime Amateur Radio experience. We also attended the Dayton Hamvention in 2014 where we had a chance to see all of the latest and greatest in Amateur Radio Equipment.

Our 2014 QSOs By Callsign

Our 2014 QSOs By Callsign

We were quite active on the air making almost 26,000 contacts between the two of us. As you can see from the graphic above, about 45% of our contacts were as part of Special Event Operations. We also made a little over 500 contacts from our mobile station, working over 100 DXCC entities in 2014 from the mobile.

Our 2014 QSOs By Band

Our 2014 QSOs By Band

 We were active on all of the HF bands this year. We made our first contacts on the 60m band and I was able to focus on the 6m band and earn a VUCC Operating Award (100 grid squares worked and confirmed) on that band. Anita and I also made our first DX contacts to Europe on 6m in 2014. Anita took quite an interest in the 160m band and she is working on a Worked All States Operating Award on this band. Our operating time using weak signal and satellite modes on the 2m and 70cm bands was limited to a few contacts this year. I did make my first contacts through LEO Satellites in 2014.

We

Our 2014 QSOs By Mode

Our 2014 QSOs By Mode

We mostly operated in the SSB phone mode in 2014. Anita and I both continue to work on our CW skills and we managed a little over 800 QSOs using CW in 2014. Anita was very active in the RTTY mode as part of her RTTY contesting efforts.

K2K New Hampshire QSL!

13 Colonies K2K New Hampshire QSL!

All of this operating resulted in quite a bit of QSL activity. We sent a total of almost 4,200 QSL cards in 2014!

We again made a video showing all of our contacts around the world in 2014. As you can see from the video, we were fortunate to work quite a bit of DX in 2014.

6M VUCC Operating Award

Fred’s 6M VUCC Operating Award

All of this operating helped Anita and me to make some progress on operating awards this year. In addition to earning a 6M VUCC, I also completed a Worked All States Award on all 9 HF bands 160m-10m. I was also able to complete several nice regional operating awards (Worked All Europe TOP Plaque, Worked All VK Call Areas and Worked All Africa) as well upgrading my DXCC Challenge Award to the 1,500 Band Country level. Anita completed her JARL JCC Award (she worked 100+ Cities in Japan) as well as her Worked All States Triple Play Award (all states on SSB, CW and Digital via LoTW).

Anita and I had a lot of fun with Amateur Radio in 2014. We are looking forward to another great year of HAM Radio fun in 2015. We hope to share some of what we learn and our experiences with our readers here on our Blog.

– Fred (AB1OC)

Operating Mobile HF – Working DX On The 80M Band


JA4FHE QSL

JA4FHE QSL

We have continued to gain experience with our recently completed mobile HF installation in our F-150 pickup truck. We have been working quite a bit of DX from our completed mobile station. Recently, I have been concentrating on the 80m band from the mobile station and have been pleasantly surprised with some great DX contacts on this band. The last two evenings around sunset here in New Hampshire, USA have been particularly good ones for 80m DX. This evening, I heard Aki-San, JA4FHE during a short errand just as we were one the grey line. I pulled over to the side of the road so that I could concentrate on the contact and turned on the amplifier (450W). After a few tries, Aki-San came back to me and we completed the contact! This was my first contact to Japan ever on the 80m band and it was from the mobile!

JA4FHE's Antennas

JA4FHE’s Antennas

Aki-San has a capable antenna system including a 2-element yagi for the 80m band and his antenna system no doubt helped to make the contact possible. My received signal report was a 44 (he was 57 on my end) but the band was quiet and we were easily able to exchange names, signal reports and our callsigns.

OU5U's View

OU5U’s View

I have also been working quite a bit of DX on the 80m band from our mobile station into Europe. I recently encountered a nice group of fellows working a team effort on 80m. I was on the light side of the afternoon grey line here in New Hampshire, USA when I worked Henry, OU5U in Denmark from the mobile. It was a bit early for 80m but our signal reports at that time were 55 both ways (I worked Henry again from the mobile later in the evening on 80m and our reports were 59 both ways the second time). I also worked John, G4PKP in the United Kingdom, and Ian, GM4UYN in Scotland during this session. Signal reports ranged from 57 to 59+ both ways.

80m Ground Plane Antenna

80m Ground Plane Antenna

John, G4PKP was using an 80m ground plane antenna and he was putting a good signal into my mobile once we were on the dark side of the grey line.

Scorpion SA-680 Screwdriver Antenna

Scorpion SA-680 Screwdriver Antenna

I am quite surprised at what is possible on 80m using a short antenna. Our screwdriver antenna (a Scorpion SA-680) is set up with a 4 ft rod and a cap hat. The 4 ft rod/cap hat combination is electrically longer than the usual 6 ft whip that one might use on a screwdriver antenna and therefore requires less of the screwdriver antenna’s base loading coil to be used to tune the antenna to resonance. This significantly improves the overall efficiency of the combination.

Screwdriver Antenna Configured For 160m

Screwdriver Antenna Configured For 160m

We are moving into the best part of the year for operating on the low bands here in the Northeastern, USA. The days are short and the 80m and 160m bands are quiet at night. I plan to concentrate on 160m next and see what sort of results we can achieve using our mobile station on the Top Band.

– Fred (AB1OC)

Operating Mobile HF – Working DX


ZS2XD Antennas

ZS2XD Antennas In South Africa

It is still early days for operating mobile HF now that our setup is complete. I am continuing to make adjustments to improve performance. I had a chance to operate mobile from New Hampshire, USA this evening made some interesting contacts. I began by calling CQ on 20m SSB. I was operating with the amplifier on at about 325W output. I had a pileup almost immediately and worked about 20 contacts over about 40 minutes. Early on in the pileup, I had several stations in Europe call me. I also had ZS2XD, Gerry in South Africa answer my CQ! The signal reports for our QSO were 59 both ways and I was able to have a nice conversation with Gerry. We were both surprised that the contact was as solid as it was. Gerry has a good antenna system on his end and I was on the grey line which no doubt helped.

HL4FUA Antennas

HL5FUA Antennas On Ullung Island, South Korea

Later in the evening I decided to tune across the 40m band where I encountered Choi, HL5FUA on  Ullung Island (AS-045), South Korea calling CQ. He was working stations all around the world and had a decent pileup going. I set my drive to produce about 425W out and called him. To my surprise, he came right back on the first try! The signal reports for our QSO were 56 both ways. I believe that he was working the USA long path over Europe. Choi has a good directional antenna and was using some power. This combined with my being just on the dark side of the grey line certainly helped.

With these contacts, I have worked a total of 95 DXCCs mobile HF from our truck. I continue to be surprised at how well a properly installed mobile HF setup works. Our results are also a testament to the efficiency of the Scorpion SA-680 Screwdriver Antenna that we are using. I plan to concentrate on the low bands (80m and 160m) and see what sort of DX is possible on these bands.

– Fred (AB1OC)

Operating as W1AW/1 Part II – ARRL Centenial QSO Party


ARRL Centennial Celebration Logo

ARRL Centennial Celebration Logo

I was fortunate to operate as one of the W1AW portable stations as part of the ARRL Centennial QSO Party again this past week. The first time the state of New Hampshire was on, I was only able to devote a limited amount of time to this operation. This time, I was able to set more time aside and operate about 4 hours on each of 6 of the 8 days that W1AW/1 New Hampshire was on the air this past week. During this time, I was able to make 1,925 contacts averaging a little over 120 QSOs for each hour that I operated.

 Mode/Band

QSOs

% Total

 SSB Phone

2878

98%

   RTTY

47

2%

 
  160m

207

7%

    80m

77

3%

    40m

379

13%

    20m

1103

38%

    17m

799

27%

    12m

79

3%

    10m

281

10%

   Total

2925

100%

The table above shows the final stats for my operations as W1AW/1 NH this past week. I mostly concentrated on the SSB Phone mode with a bit of RTTY operations on the last day. As one would expect, 20m and 40m were the most popular bands.

I encountered pileups on all of the days that I operated with the largest ones being on the first evening on 20m We had a significant solar CME event during the operation and subsequent Auroral activity which created some interesting band conditions. In particular, almost all of the 10m and 12m contacts were done on Thursday and Friday evenings using backscatter propagation. I was unable to hear much with my antennas pointed at the folks that I was trying to work on 10m and 12m so I tried pointing the beams directly south to test backscatter propagation. I also asked the folks in the pileup to do the same. This mode of operation resulted in about 350 QSOs on 10m and 12m! This was also great news for the close-in stations as this mode of propagation allowed folks in adjacent states to work New Hampshire on the higher bands.

It was great fun operating as W1AW/1 New Hampshire this past week. I wish there would be another chance to do this but we’ll have to wait awhile for the ARRL’s next big birthday to come around.

– Fred (AB1OC)